

 [image: Alternative text]

Welcome

PyLookML allows scripting of LookML in python. It leverages the lkml [https://pypi.org/project/lkml/] parser to interpret raw lookml files then adds an object oriented syntax
and helpful integrations to boost your productivity.
View the source code or log an issue here [https://github.com/llooker/lookml/].

Note

pyLookML 3.0.0, a milestone release, is now available on pip. See the changelog for details.

Why

	Sometimes usecases demand automation, where you want rules to govern the rules.

	
	EAV data / frequently changing custom fields (see EAV)

	Nested data

	Applying complex patterns repeatably

	Create LookML based on API response (such as autotune)

	Bulk conversion of old reports

Quickstart

Install pylookml package via pip

pip install lookml

Make a github access token [https://help.github.com/en/github/authenticating-to-github/creating-a-personal-access-token-for-the-command-line]

Fetch a viewFile from Github and print one of its dimensions

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	import lookml
proj = lookml.Project(
 repo= "llooker/pyLookMLExample",
 access_token="your_github_access_token",
 #Optional args for the deploy URL (for deploying directly to prodcution mode)
 ,looker_host="https://mylooker.looker.com/"
 ,looker_project_name="my_project"
)
viewFile = proj.file('01_order_items.view.lkml')
orderItems = viewFile.views.order_items
print(orderItems.id)

Or do the same thing from any other git service (as long as you have SSH git access on the machine pyLookML is running on):

	1
2
3
4
5
6

	 self.proj = lookml.Project(
 git_url='git@bitbucket.org:myorg/russ_sandbox.git'
 #Optional args for the deploy URL (for deploying directly to prodcution mode)
 ,looker_host="https://mylooker.looker.com/"
 ,looker_project_name="my_project"
)

This works for bitbucket, gitlab, or private git servers.

How to reference objects
The taxonomy is basically as follows
project>file>’views’>viewname>fieldname>property
project>file>’explores’>explorename>joinname>property

myProject = lookml.Project(
 repo= "llooker/russ_sandbox",
 access_token="your_github_access_token",
)
#Use a dot operator syntax:
myProject.file('order_items.view.lkml').views.order_items.id.primary_key.value

#Use a dictionary like syntax:
myProject['order_items.view.lkml']['views']['order_items']['id'].primary_key.value

Get all the way down to property values in one line of code

lookml.Project(**config['project1'])['order_items.view.lkml']['views']['order_items']['id'].primary_key.value

Looping over stuff

dimension: id {
 type: string
 sql: ${TABLE}.id ;;
 tags: ["a","b","c"]
}

for tag in order_items.id.tags:
 print(tag)
>>> 'a'
>>> 'b'
>>> 'c'

Updating things

The + operator in pyLookML is significant, it allows us to add a string of LookML to our object like so.
Also notice the way we change the primary key paramter.

	1
2
3
4
5
6
7
8
9

	 order_items = lookml.View('order_items')
 order_items + '''
 dimension: id {
 type: string
 sql: ${TABLE}.id ;;
 }
 '''
 order_items.id.primary_key = 'yes'
 print(order_items)

after your object is updated, you need to save it back to github, and optionally hit the looker deploy URL

	1
2
3
4
5

	 newFile = lookml.File(order_items)
 #the put method, creates or overwrites
 myProject.put(newFile)
 #optionally hitting the Looker deploy URL (requires that you set your instance URL on project creation)
 myProject.deploy()

Build from a developer version

Step 1) Create a virtual env from a clean python and install the dependencies

which python3 #(this is generally the best interpreter use as the startingpoint)
#Output: /Library/Frameworks/Python.framework/Versions/3.8/bin/python3
mkdir lookml_test
cd lookml_test
virtualenv -p /Library/Frameworks/Python.framework/Versions/3.8/bin/python3 lookml_test_env
source lookml_test_env/bin/activate
pip install pygithub
pip install lkml

Step 2) go to github and look for the specific commit you’d like to build and replace it in the following command after the @ sign

pip install git+https://github.com/llooker/lookml.git@04dbd05dd3f37a7fa624501a370df52af26bb5fc

	Introduction

	Cookbook / Examples

	AutoGen for EAV

	Autotune your model using PyLookML

	Full API Reference

	Change Log

Introduction

Visit Home [https://pylookml.readthedocs.io/] for the quickstart guide

Video tutorials coming soon!

Cookbook / Examples

Basic Recipes

	connect to your github project

	1
2
3
4
5

	import lookml
proj = lookml.Project(
 repo= "llooker/russ_sandbox",
 access_token="your_github_access_token",
)

Note

Project() will dispatch the correct project subclass ProjectGithub or ProjectSSH depending on the args provided

Or do the same thing from any other git service (as long as you have SSH git access on the machine pyLookML is running on):

	1
2
3
4
5
6

	 proj = lookml.ProjectSSH(
 git_url='git@bitbucket.org:myorg/russ_sandbox.git'
 #Optional args for the deploy URL (for deploying directly to prodcution mode)
 ,looker_host="https://mylooker.looker.com/"
 ,looker_project_name="my_project"
)

Or just connect to the local filesystem without git:

	1
2
3

	 proj = lookml.Project(
 path='path/to/myproject'
)

	Loop over the views in a file

	1
2
3
4

	myFile = proj.file('01_order_items.view.lkml')
#Loops over 1:n views in the file
for view in myFile.views:
 print(view)

	create a new file in your project

	1
2
3

	newFile = proj.new_file('views/my_new_file.view.lkml')
newFile + 'view: new_view {}'
newFile.views.new_view + lookml.Dimension('dimension: id {}')

	create a new model file

	1
2

	modelFile = proj.new_file('my_new_model.model.lkml')
modelFile + 'explore: foo {}'

	Write your files back to github

	1
2
3

	viewFile = proj.file('01_order_items.view.lkml')
viewFile.views.order_items.id.addTag("hello, World!")
proj.put(viewFile)

	Loop over fields of a certain type

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	>>> for dim in myFile.views.order_items.dimensions():
... print(dim.__ref__)
...
${order_items.new_dimension}
${order_items.id}
${order_items.cpt_code_value}
${order_items.inventory_item_id}
...
>>> for meas in myFile.views.order_items.measures():
... print(meas.__ref__)
...
${order_items.count}
${order_items.min_sale_price}
${order_items.max_sale_price}
${order_items.order_count}
>>> for flt in myFile.views.order_items.filters():
... print(flt.__ref__)
...
${order_items.cpt_code}
${order_items.cohort_by}
${order_items.metric}

	check all of the children / decendants of a field

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	>>> for child in order_items.sale_price.children():
... print(child.__refs__)
...
${min_sale_price}
${max_sale_price}
${total_sale_price}
${average_sale_price}
${median_sale_price}
${returned_total_sale_price}
${gross_margin}
${item_gross_margin_percentage}

	search a view for dimensions who’s properties match a regex pattern (Find view fields by regex searching any parameter)

	1
2
3
4
5
6

	>>> for item in order_items.search('sql','\$\{shipped_raw\}'):
... print(item.__ref__)
... print(item.sql)
...
${order_items.shipping_time}
sql: datediff('day',${shipped_raw},${delivered_raw})*1.0 ;;

	Add a new view to an existing file

	1
2
3
4
5
6
7

	myNewView = lookml.View('hello_world')
myFile = proj.file('01_order_items.view.lkml')
myFile + myNewView
for view in myFile.views:
 print(view.name)
>>> 'order_items'
>>> 'hello_world'

	Get fields by tag, do work, remove tag

	1
2
3

	for field in orderItems.getFieldsByTag('x'):
 #do work
 field.removeTag('x')

Field References

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	>>> myView = View('order_items') + 'id'
>>> print(myView.id)
dimension: id {

 }
#__ref__ stands for reference
>>> print(myView.id.__ref__)
${order_items.id}
#__refs__ stands for reference short
>>> print(myView.id.__refs__)
${id}
#__refr__ stands for reference raw
>>> print(myView.id.__refr__)
order_items.id
#__refrs__ stands for reference raw short
>>> print(myView.id.__refrs__)
id

Convenience Methods

	Add a sum measure for every number dimension on a view

	1

	orderItems.sumAllNumDimensions()

	Change the name of a field and all its child references

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	>>> print(order_items2.shipping_time)

dimension: shipping_time {
 type: number
 sql: datediff('day',${shipped_raw},${delivered_raw})*1.0 ;;
}

>>> for field in order_items2.shipping_time.children():
... print(field)

measure: average_shipping_time {
 type: average
 value_format_name: decimal_2
 sql: ${shipping_time} ;;
}
#The setName_safe method previously change_name_and_child_references, use that if setName_safe not found
>>> order_items2.shipping_time.setName_safe('time_in_transit')
>>> print(time_in_transit)
dimension: time_in_transit {
 type: number
 sql: datediff('day',${shipped_raw},${delivered_raw})*1.0 ;;
}
>>> for field in order_items2.time_in_transit.children():
... print(field)
measure: average_shipping_time {
 type: average
 value_format_name: decimal_2
 sql: ${time_in_transit} ;;
}

	working with a local file

	Changing field names safely (The setName_safe method previously change_name_and_child_references, use that if setName_safe not found)

myFile = lookml.File('example.view.lkml')
 for v in myFile.views:
 for f in v.measures():
 if f.type.value == 'sum' and not f.name.endswith('_total'):
 f.name = f.setName_safe(f.name + '_total')
 #Optionally Change the location
 myFile.setFolder('pathto/other/folder')
 #Write the file
 x.write()

AutoGen for EAV

Warning

Setting up EAV automation can generate high code volume. Pair with a Looker architect to plan for scale. Multiple instances may be necessary at large volumes.

What is EAV?

EAV data is storing key / value pairs in a table. It can allow application owners to hold data for which they can’t predict the columns or attributes at design time.
Common examples might include customizable objects (i.e. my users can add their own fields),or scientific data with many attributes or surveys.
EAV data allows flexibility, but can be notoriously difficult to perform analysis on. In this tutorial, we will show how pyLookML can be configured to create LookML for unpacking, imposing a permission structure
and allowing analysis on EAV data.

An Example of a configurable user profile table

Our example will follow a site with a configurable user profile. Organizations that use the site “Orgs” can add profile fields for their members so that admins can track org specific values for each of their user accounts.

Here is the sample data we’ll be using throughout. Imagine this sample data comes from a table called custom_profile_fields.

custom_profile_fields

	user_id

	org_id

	field_name

	value

	datatype

	1

	8

	c_donation_amount

	40

	int

	1

	8

	c_highest_achievement

	gold badge

	varchar

	2

	101

	c_highest_achievement

	silver badge

	varchar

	2

	101

	c_monthly_contribution

	300

	int

	3

	101

	c_highest_achievement

	bronze badge

	varchar

	3

	101

	c_monthly_contribution

	350

	int

	4

	101

	c_monthly_contribution

	350

	int

	4

	101

	age

	32

	int

	5

	102

	c_monthly_contribution

	100

	int

You can see that the field name and value form the key,value relationship characteristic of EAV. Structured in a traditional table layout, we would need 4 columns to capture the 4 distinct custom fields:
c_donation_amount, c_highest_achievement, c_monthly_contribution, age. And this would grow (as orgs and user accounts were added) to be much wider than is practical, or wider than the database may even allow a table to be.
However for analysis, we want to create a “slice” of this table for each org, showing them just their attributes as if it were a normal table.
Also notice that because the “value” column has mixed datatypes it must be a wide and neutral (typically a very wide varchar) and cast by the application when the record is read. Often by necessity you will often see the value paired with a column which tracks its type so the application can bind it to the right datatype at runtime.

Here is the LookML starting point (the script assumes that you have already created views for the relevant tables) but it will allow the ongoing programatic addition of fields.
We have a usr table which tracks basic information about our user accounts eav_source (which would be pointed at public.custom_profile_fields) and usr_profile which will track the extended profile attributes from custom_profile_fields (we’ll also permission the fields at the org level).
The explore usr, just associates our usr table to the usr profile table which will contain the un-packed EAV values. We have also added an access filter, so that our orgs can only see thier own records.

connection: "snowlooker"

explore: usr {
 access_filter: {
 field: usr_profile.org_id
 user_attribute: org_id
 }
 join: usr_profile {
 type: left_outer
 relationship: one_to_one
 sql_on: ${usr.id} = ${usr_profile.user_id} ;;
 }
}

view: usr {
 sql_table_name: public.users ;;
 dimension: email {}
 dimension: id {}
 dimension_group: created { timeframes: [raw,date,month,year] }
}

view: usr_profile {
 dimension: org_id {}
 dimension: user_id {}
}

view: eav_source {
 sql_table_name: public.custom_profile_fields ;;
 dimension: datatype { type: string }
 dimension: field_name { type: string }
 dimension: org_id { type: number }
 dimension: user_id { type: number }
 dimension: value { type: string }
}

Now for the automation code. First install the dependencies (FYI I highly reccoemnd using a virtual environment).
We will be using the Looker SDK [https://github.com/looker-open-source/sdk-codegen/tree/master/python] to run sql against the DB which will tell us what fields we need to create.
And we’ll install our pyLookML package as well.

pip install lookml, looker_sdk

create a file called api.ini in the directory where your python script will run to house the Looker API connection parameters:

Base URL for API. Do not include /api/* in the url
base_url = https://mylooker.looker.com:19999
API 3 client id
client_id=put_your_client_id_here
API 3 client secret
client_secret=put_your_sectret_here
Set to false if testing locally against self-signed certs. Otherwise leave True

The automation python file follows these high level steps.

	connect to the Looker API to pull a list of EAV fields

	create a pyLookML project connection to your github

	Set up the objects we’ll be manipulating (some are just strings which will be added back to the LookML at the end)

	loop over the list of EAV k,v pairs and do work

	loop over the distinct raw columns (obtained in the full k,v loop) for adding columns to the NDT

	loop over the distinct org ids to add the model’s access grants

	add all the final objects back to the model file

	save the file back to the project in github

	hit the looker deploy URL to sync Looker production mode with the github master branch

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

	 import lookml
 from looker_sdk import models, methods, init40
 import json

 # step 1 -- connect to the Looker API to pull a list of EAV fields
 sdk = init40("api.ini")
 sql_for_fields = f"""
 SELECT
 cpf.org_id
 ,cpf.value
 ,cpf.datatype
 ,cpf.field_name as FIELD_NAME
 , CASE
 WHEN cpf.datatype IN ('TIMESTAMP_LTZ') THEN 'time'
 WHEN cpf.datatype IN ('FLOAT','NUMBER', 'int') THEN 'number'
 ELSE 'string' END as LOOKER_TYPE
 FROM
 -- public.custom_profile_fields as cpf
 (
 SELECT 1 as user_id, 8 as org_id, 'c_donation_amount' as field_name, '40' as value, 'int' as datatype UNION ALL
 SELECT 1, 8, 'c_highest_achievement', 'gold badge', 'varchar' UNION ALL
 SELECT 2, 101, 'c_highest_achievement', 'silver badge', 'varchar' UNION ALL
 SELECT 2, 101, 'c_monthly_contribution', '300', 'int' UNION ALL
 SELECT 3, 101, 'c_highest_achievement', 'bronze badge', 'varchar' UNION ALL
 SELECT 3, 101, 'c_monthly_contribution', '350', 'int' UNION ALL
 SELECT 4, 101, 'c_monthly_contribution', '350', 'int' UNION ALL
 SELECT 4, 101, 'age', '32', 'int' UNION ALL
 SELECT 5, 102, 'c_monthly_contribution', '100', 'int'
) as cpf
 WHERE
 1=1
 GROUP BY 1,2,3,4,5
 """
 query_config = models.SqlQueryCreate(sql=sql_for_fields, connection_id="snowlooker")
 query = sdk.create_sql_query(query_config)
 response = json.loads(sdk.run_sql_query(slug=query.slug, result_format="json"))

 # step 2 -- create a pyLookML project connection to your github
 proj = lookml.Project(
 #the github location of the repo
 repo= 'llooker/your_repo'
 #instructions on creating an access token: https://help.github.com/en/github/authenticating-to-github/creating-a-personal-access-token-for-the-command-line
 ,access_token='your_access_token'
 #your Looker host
 ,looker_host="https://example.looker.com/"
 #The name of the project on your looker host
 ,looker_project_name="pylookml_testing_2"
 #You can deploy to branches other than master, a shared or personal branch if you would like to hop into looker, pull
 #remote changes and review before the code is committed to production
 ,branch='master'
)
 #For simplicity of this example, all of the objects we're tracking will be contained in the model file, but for your needs can be split across the project.
 modelFile = proj['eav_model.model.lkml']

 # step 3 -- Set up the objects we'll be manipulating (some are just strings which will be added back to the LookML at the end)
 #the EAV source view points to our custom_profile_fields database table
 eavSource = modelFile['views']['eav_source']
 #the user profile we'll call the "flattening NDT" since that's where our flattening logic lives
 flatteningNDT = modelFile['views']['usr_profile']

 #Ensure there is a hidden explore to expose the eav_souce transformations to our user_profile NDT
 modelFile + f'''
 explore: _eav_flattener {{
 from: {eavSource.name}
 hidden: yes
 }}
 '''
 #Begin the derived table, will be added to as we loop through the fields
 drivedtableString = f'''
 derived_table: {{
 explore_source: _eav_flattener {{
 column: user_id {{ field: _eav_flattener.user_id }}
 column: org_id {{ field: _eav_flattener.org_id }}
 '''

 #Set up a pair of list to track the unique org ids and column names
 #since the api query will be at a org / column level this allows us to "de-dupe"
 orgIds, columns = [], []

 # step 4 -- loop over the list of EAV k,v pairs and do work
 for column in response:
 dimName = lookml.core.lookCase(column['FIELD_NAME'])
 orgIds.append(column['org_id'])
 columns.append(dimName)
 #Step 1) Add flattening measure to the EAV source table
 eavSource + f'''
 measure: {dimName} {{
 type: max
 sql: CASE WHEN ${{field_name}} = '{column['FIELD_NAME']}' THEN ${{value}} ELSE NULL END;;
 }}
 '''

 # Add to the NDT fields
 flatteningNDT + f'''
 dimension: {dimName}_org_{column['org_id']} {{
 label: "{dimName}"
 type: {column['LOOKER_TYPE']}
 sql: ${{TABLE}}.{dimName} ;;
 required_access_grants: [org_{column['org_id']}]
 }}
 '''
 if column['LOOKER_TYPE'] == "number":
 flatteningNDT + f'''
 measure: {dimName}_total_org_{column['org_id']} {{
 label: "{dimName}_total"
 type: sum
 sql: ${{{dimName}_org_{column['org_id']}}} ;;
 required_access_grants: [org_{column['org_id']}]
 }}
 '''
 # step 5 -- loop over the distinct raw columns (obtained in the full k,v loop) for adding columns to the NDT
 for col in set(columns):
 drivedtableString += f' column: {col} {{ field: _eav_flattener.{col} }}'
 drivedtableString += '}}'

 # step 6 -- loop over the distinct org ids to add the model's access grants
 accessGrants = ''
 for org in set(orgIds):
 accessGrants += f'''
 access_grant: org_{org} {{
 user_attribute: org_id
 allowed_values: [
 "{org}"
]
 }}
 '''
 # step 7 -- add all the final objects back to the model file
 #Finish by adding some of the strings we've been tracking:
 flatteningNDT + drivedtableString
 #Add access grants to the model
 modelFile + accessGrants

 # step 8 -- save the file back to the project in github
 proj.put(modelFile)
 #s step 9 -- hit the looker deploy URL to sync Looker production mode with the github master branch
 proj.deploy()

The Completed LookML output to the eav.model.lkml file

connection: "snowlooker"

access_grant: org_8 {
 user_attribute: org_id
 allowed_values: [
 "8",
]
}
access_grant: org_101 {
 user_attribute: org_id
 allowed_values: [
 "101",
]
}
access_grant: org_102 {
 user_attribute: org_id
 allowed_values: [
 "102",
]
}

explore: usr {
 access_filter: {
 field: usr_profile.org_id
 user_attribute: org_id
 }
 join: usr_profile {
 type: left_outer
 relationship: one_to_one
 sql_on: ${usr.id} = ${usr_profile.user_id} ;;
 }
}

explore: _eav_flattener {
 from: eav_source
 hidden: yes
}

view: usr {
 sql_table_name: public.users ;;
 dimension: email {}
 dimension: id {}
 dimension_group: created {
 timeframes: [
 raw, date, month, year,
]
 type: time
 }
}

view: usr_profile {

derived_table: {
 explore_source: _eav_flattener {
 column: user_id { field: _eav_flattener.user_id}
 column: org_id { field: _eav_flattener.org_id }
 column: c_donation_amount { field: _eav_flattener.c_donation_amount}
 column: c_monthly_contribution { field: _eav_flattener.c_monthly_contribution }
 column: c_highest_achievement { field: _eav_flattener.c_highest_achievement }
 column: age { field: _eav_flattener.age }
 }
}
dimension: age_org_101 {
 label: "age"
 type: number
 sql: ${TABLE}.age ;;
 required_access_grants: [org_101,]
 }
dimension: c_donation_amount_org_8 {
 label: "c_donation_amount"
 type: number
 sql: ${TABLE}.c_donation_amount ;;
 required_access_grants: [org_8,]
 }
dimension: c_highest_achievement_org_101 {
 label: "c_highest_achievement"
 type: string
 sql: ${TABLE}.c_highest_achievement ;;
 required_access_grants: [org_101,]
 }
dimension: c_highest_achievement_org_8 {
 label: "c_highest_achievement"
 type: string
 sql: ${TABLE}.c_highest_achievement ;;
 required_access_grants: [org_8,]
 }
dimension: c_monthly_contribution_org_101 {
 label: "c_monthly_contribution"
 type: number
 sql: ${TABLE}.c_monthly_contribution ;;
 required_access_grants: [org_101,]
 }
dimension: c_monthly_contribution_org_102 {
 label: "c_monthly_contribution"
 type: number
 sql: ${TABLE}.c_monthly_contribution ;;
 required_access_grants: [org_102,]
 }
dimension: org_id {}
dimension: user_id {}
measure: age_total_org_101 {
 label: "age_total"
 type: sum
 sql: ${age_org_101} ;;
 required_access_grants: [org_101,]
 }
measure: c_donation_amount_total_org_8 {
 label: "c_donation_amount_total"
 type: sum
 sql: ${c_donation_amount_org_8} ;;
 required_access_grants: [org_8,]
 }
measure: c_monthly_contribution_total_org_101 {
 label: "c_monthly_contribution_total"
 type: sum
 sql: ${c_monthly_contribution_org_101} ;;
 required_access_grants: [org_101,]
 }
measure: c_monthly_contribution_total_org_102 {
 label: "c_monthly_contribution_total"
 type: sum
 sql: ${c_monthly_contribution_org_102} ;;
 required_access_grants: [org_102,]
 }
}

view: eav_source {
sql_table_name: public.custom_profile_fields ;;
dimension: datatype { type: string }
dimension: field_name { type: string }
dimension: org_id { type: number }
dimension: user_id { type: number }
dimension: value { type: string }

measure: age {
 type: max
 sql: CASE WHEN ${field_name} = 'age' THEN ${value} ELSE NULL END ;;
 }
measure: c_donation_amount {
 type: max
 sql: CASE WHEN ${field_name} = 'c_donation_amount' THEN ${value} ELSE NULL END ;;
 }
measure: c_highest_achievement {
 type: max
 sql: CASE WHEN ${field_name} = 'c_highest_achievement' THEN ${value} ELSE NULL END ;;
 }
measure: c_monthly_contribution {
 type: max
 sql: CASE WHEN ${field_name} = 'c_monthly_contribution' THEN ${value} ELSE NULL END ;;
 }
}

More information and resources

	2019 Looker JOIN presentation on EAV and LookML Generation [https://www.youtube.com/watch?v=cdyn-KLwyfc]

	More about modeling EAV data in Looker [https://discourse.looker.com/t/three-ways-to-model-eav-schemas-and-many-to-many-relationships/1780]

As an alternative to the MAX(CASE WHEN NAME=’foo’ THEN VALUE END) construct, you can use first / last value window functions. The specifics of the implementation may look slightly different.

FIRST_VALUE(
 CASE
 WHEN attributename = 'single_type' THEN attributevalue
 ELSE NULL
 END
IGNORE NULLS)
OVER (partition by sessionid order by sessionid)

Autotune your model using PyLookML

PyLookML offers a command line interface (CLI) which offers several commands, one of which is autotune.
It will automatically create aggregate awareness tables inside of your LookML model based on the most frequently run queries and commit to a
developer branch so that you can confirm the output first.

Let’s get started with an example:
Ensure that you have installed it using pip, which will bind the lookml command. Note: if you install it in a virtual environment
the lookml command will only be available when the virtual environment is active.

pip install lookml

We will be using a cli command ‘lookml autotune’ which will search for a file in your current directory called autotune.ini.

	pyLookML look for an autotune.ini file in the current working directory

	Your autotune.ini should look like this:

[autotune]
access_token = xxx
looker_host = https://mycompany.looker.com:19999
api_client = xxx
api_secret = yyy
model_name = bike_share
branch = dev-john-doe-yddt

Then on the command line you can run:

lookml autotune

If your autotune.ini is stored in a different location, you can provide the path by running

lookml autotune useconfig

and you will be prompted to provide the path

If you would like to provide each bit of info interactively run:

lookml autotune guided

it will ask you for all the info and you can paste it in.

It may take a minute to run, but the result will be a single file with your aggregates located on the branch you provided,
allowing you to check the output before pushing to production.

[image: shows the file tree with the pylookml folder]
[image: Shows the pylookml output]

Full API Reference

Change Log

Starting with PyLookML version 3.0.0

3.0.3

	fixed an issue with the constructor not accepting lookML names with numbers Issue Link [https://github.com/llooker/pylookml/issues/43].

The following code now works:

my_dim = lookml.Dimension('dimension: custom_5 {}')

3.0.0

	complete and more stable re-write geared toward maximum backward compatibility

	language complete for all the latest LookML language updates (as of Looker 7.20) (new filters, materializations etc)

	significantly better whitespace handling

	can connect to filesystem without git

	added a CLI with various functions, including project dir list and autotune

	added new operator overloading syntax

	more helpful error messages

	options such as OMIT_DEFAULTS = true

Index

 _static/ajax-loader.gif

_images/pyLookML.png
Q
() C)
=) pylookML
o py
view + f’’’dimension: {{dim}} {
type: number

sql: {{dim_sql}} ;;
}III

_static/aggs.png
bike_share_aggs.view «

6~ query: {
7 dimensions: [trip_start_count_prediction.station_id, station.location]
8 measures: [trip_start_count_prediction.predicted_daily_surplus]
9 description: "https://dat.dev.looker. com/x/5PKjKfR"
10 filters: [trip_start_count_prediction.predicted_daily_surplus:">=2.25,<-2.6"]
11 }
12~ materialization: {
13 datagroup_trigger: sweet_datagroup
14 1}
15~ aggregate_table: auto_pylookml_dgXhqrB {
il16-~ query: {
17 dimensions: [station.name]
18 measures: [trip_start_count_prediction.predicted_daily_surplus]
il9 description: "https://dat.dev.looker.com/x/dgXhqrB"
20 filters: [trip_start_count_prediction.predicted_daily_surplus:">=2.25,<-2.6"]
21 }
22~ materialization: {
23 datagroup_trigger: sweet_datagroup
24 1}
25~ aggregate_table: auto_pylookml_dFnVhS7 {
i26-~ query: {
27 dimensions: [trip_start_count_prediction.station_id, station.location]
28 measures: [trip_start_count_prediction.predicted_daily_surplus]
i 29 description: "https://dat.dev.looker..com/x/dFnvhs7"
30 filters: [trip_start_count_prediction.predicted_daily_surplus:">=2.25,<-2.6"]

31 1

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/down.png

_images/aggs.png
bike_share_aggs.view «

6~ query: {
7 dimensions: [trip_start_count_prediction.station_id, station.location]
8 measures: [trip_start_count_prediction.predicted_daily_surplus]
9 description: "https://dat.dev.looker. com/x/5PKjKfR"
10 filters: [trip_start_count_prediction.predicted_daily_surplus:">=2.25,<-2.6"]
11 }
12~ materialization: {
13 datagroup_trigger: sweet_datagroup
14 1}
15~ aggregate_table: auto_pylookml_dgXhqrB {
il16-~ query: {
17 dimensions: [station.name]
18 measures: [trip_start_count_prediction.predicted_daily_surplus]
il9 description: "https://dat.dev.looker.com/x/dgXhqrB"
20 filters: [trip_start_count_prediction.predicted_daily_surplus:">=2.25,<-2.6"]
21 }
22~ materialization: {
23 datagroup_trigger: sweet_datagroup
24 1}
25~ aggregate_table: auto_pylookml_dFnVhS7 {
i26-~ query: {
27 dimensions: [trip_start_count_prediction.station_id, station.location]
28 measures: [trip_start_count_prediction.predicted_daily_surplus]
i 29 description: "https://dat.dev.looker..com/x/dFnvhs7"
30 filters: [trip_start_count_prediction.predicted_daily_surplus:">=2.25,<-2.6"]

31 1

_images/file_tree.png
File Browser

~ pylookml
I bike_share_aggs.view

_static/file.png

nav.xhtml

 Table of Contents

 		
 Welcome

 		
 Introduction

 		
 Cookbook / Examples

 		
 Basic Recipes

 		
 Field References

 		
 Convenience Methods

 		
 AutoGen for EAV

 		
 What is EAV?

 		
 More information and resources

 		
 Autotune your model using PyLookML

 		
 Full API Reference

 		
 Change Log

_static/plus.png

_static/pyLookML.png
Q
() C)
=) pylookML
o py
view + f’’’dimension: {{dim}} {
type: number

sql: {{dim_sql}} ;;
}III

_static/file_tree.png
File Browser

~ pylookml
I bike_share_aggs.view

_static/minus.png

_static/up.png

_static/up-pressed.png

