
pylookml
Release 3.0.0

Jan 26, 2021

Contents

1 Why 3

2 Quickstart 5

3 Build from a developer version 7

i

ii

pylookml, Release 3.0.0

PyLookML allows scripting of LookML in python. It leverages the lkml parser to interpret raw lookml files then adds
an object oriented syntax and helpful integrations to boost your productivity. View the source code or log an issue
here.

Note: pyLookML 3.0.0, a milestone release, is now available on pip. See the changelog for details.

Contents 1

https://pypi.org/project/lkml/
https://github.com/llooker/lookml/

pylookml, Release 3.0.0

2 Contents

CHAPTER 1

Why

Sometimes usecases demand automation, where you want rules to govern the rules.

• EAV data / frequently changing custom fields (see EAV)

• Nested data

• Applying complex patterns repeatably

• Create LookML based on API response (such as autotune)

• Bulk conversion of old reports

3

EAV.html
autotune.html

pylookml, Release 3.0.0

4 Chapter 1. Why

CHAPTER 2

Quickstart

Install pylookml package via pip

pip install lookml

Make a github access token

Fetch a viewFile from Github and print one of its dimensions

1 import lookml
2 proj = lookml.Project(
3 repo= "llooker/pyLookMLExample",
4 access_token="your_github_access_token",
5 #Optional args for the deploy URL (for deploying directly to prodcution mode)
6 ,looker_host="https://mylooker.looker.com/"
7 ,looker_project_name="my_project"
8)
9 viewFile = proj.file('01_order_items.view.lkml')

10 orderItems = viewFile.views.order_items
11 print(orderItems.id)

Or do the same thing from any other git service (as long as you have SSH git access on the machine pyLookML is
running on):

1 self.proj = lookml.Project(
2 git_url='git@bitbucket.org:myorg/russ_sandbox.git'
3 #Optional args for the deploy URL (for deploying directly to prodcution

→˓mode)
4 ,looker_host="https://mylooker.looker.com/"
5 ,looker_project_name="my_project"
6)

This works for bitbucket, gitlab, or private git servers.

How to reference objects The taxonomy is basically as follows project>file>’views’>viewname>fieldname>property
project>file>’explores’>explorename>joinname>property

5

https://help.github.com/en/github/authenticating-to-github/creating-a-personal-access-token-for-the-command-line

pylookml, Release 3.0.0

myProject = lookml.Project(
repo= "llooker/russ_sandbox",
access_token="your_github_access_token",

)
#Use a dot operator syntax:
myProject.file('order_items.view.lkml').views.order_items.id.primary_key.value

#Use a dictionary like syntax:
myProject['order_items.view.lkml']['views']['order_items']['id'].primary_key.value

Get all the way down to property values in one line of code

lookml.Project(**config['project1'])['order_items.view.lkml']['views']['order_items'][
→˓'id'].primary_key.value

Looping over stuff

dimension: id {
type: string
sql: ${TABLE}.id ;;
tags: ["a","b","c"]

}

for tag in order_items.id.tags:
print(tag)

>>> 'a'
>>> 'b'
>>> 'c'

Updating things

The + operator in pyLookML is significant, it allows us to add a string of LookML to our object like so. Also notice
the way we change the primary key paramter.

1 order_items = lookml.View('order_items')
2 order_items + '''
3 dimension: id {
4 type: string
5 sql: ${TABLE}.id ;;
6 }
7 '''
8 order_items.id.primary_key = 'yes'
9 print(order_items)

after your object is updated, you need to save it back to github, and optionally hit the looker deploy URL

1 newFile = lookml.File(order_items)
2 #the put method, creates or overwrites
3 myProject.put(newFile)
4 #optionally hitting the Looker deploy URL (requires that you set your instance URL

→˓on project creation)
5 myProject.deploy()

6 Chapter 2. Quickstart

CHAPTER 3

Build from a developer version

Step 1) Create a virtual env from a clean python and install the dependencies

which python3 #(this is generally the best interpreter use as the startingpoint)
#Output: /Library/Frameworks/Python.framework/Versions/3.8/bin/python3
mkdir lookml_test
cd lookml_test
virtualenv -p /Library/Frameworks/Python.framework/Versions/3.8/bin/python3 lookml_
→˓test_env
source lookml_test_env/bin/activate
pip install pygithub
pip install lkml

Step 2) go to github and look for the specific commit you’d like to build and replace it in the following command after
the @ sign

pip install git+https://github.com/llooker/lookml.
→˓git@04dbd05dd3f37a7fa624501a370df52af26bb5fc

3.1 Cookbook / Examples

3.1.1 Basic Recipes

• connect to your github project

1 import lookml
2 proj = lookml.Project(
3 repo= "llooker/russ_sandbox",
4 access_token="your_github_access_token",
5)

7

pylookml, Release 3.0.0

Note: Project() will dispatch the correct project subclass ProjectGithub or ProjectSSH depending on the args provided

Or do the same thing from any other git service (as long as you have SSH git access on the machine pyLookML is
running on):

1 proj = lookml.ProjectSSH(
2 git_url='git@bitbucket.org:myorg/russ_sandbox.git'
3 #Optional args for the deploy URL (for deploying directly to prodcution

→˓mode)
4 ,looker_host="https://mylooker.looker.com/"
5 ,looker_project_name="my_project"
6)

Or just connect to the local filesystem without git:

1 proj = lookml.Project(
2 path='path/to/myproject'
3)

• Loop over the views in a file

1 myFile = proj.file('01_order_items.view.lkml')
2 #Loops over 1:n views in the file
3 for view in myFile.views:
4 print(view)

• create a new file in your project

1 newFile = proj.new_file('views/my_new_file.view.lkml')
2 newFile + 'view: new_view {}'
3 newFile.views.new_view + lookml.Dimension('dimension: id {}')

• create a new model file

1 modelFile = proj.new_file('my_new_model.model.lkml')
2 modelFile + 'explore: foo {}'

• Write your files back to github

1 viewFile = proj.file('01_order_items.view.lkml')
2 viewFile.views.order_items.id.addTag("hello, World!")
3 proj.put(viewFile)

• Loop over fields of a certain type

1 >>> for dim in myFile.views.order_items.dimensions():
2 ... print(dim.__ref__)
3 ...
4 ${order_items.new_dimension}
5 ${order_items.id}
6 ${order_items.cpt_code_value}
7 ${order_items.inventory_item_id}
8 ...
9 >>> for meas in myFile.views.order_items.measures():

10 ... print(meas.__ref__)
11 ...

(continues on next page)

8 Chapter 3. Build from a developer version

pylookml, Release 3.0.0

(continued from previous page)

12 ${order_items.count}
13 ${order_items.min_sale_price}
14 ${order_items.max_sale_price}
15 ${order_items.order_count}
16 >>> for flt in myFile.views.order_items.filters():
17 ... print(flt.__ref__)
18 ...
19 ${order_items.cpt_code}
20 ${order_items.cohort_by}
21 ${order_items.metric}

• check all of the children / decendants of a field

1 >>> for child in order_items.sale_price.children():
2 ... print(child.__refs__)
3 ...
4 ${min_sale_price}
5 ${max_sale_price}
6 ${total_sale_price}
7 ${average_sale_price}
8 ${median_sale_price}
9 ${returned_total_sale_price}

10 ${gross_margin}
11 ${item_gross_margin_percentage}

• search a view for dimensions who’s properties match a regex pattern (Find view fields by regex searching any
parameter)

1 >>> for item in order_items.search('sql','\$\{shipped_raw\}'):
2 ... print(item.__ref__)
3 ... print(item.sql)
4 ...
5 ${order_items.shipping_time}
6 sql: datediff('day',${shipped_raw},${delivered_raw})*1.0 ;;

• Add a new view to an existing file

1 myNewView = lookml.View('hello_world')
2 myFile = proj.file('01_order_items.view.lkml')
3 myFile + myNewView
4 for view in myFile.views:
5 print(view.name)
6 >>> 'order_items'
7 >>> 'hello_world'

• Get fields by tag, do work, remove tag

1 for field in orderItems.getFieldsByTag('x'):
2 #do work
3 field.removeTag('x')

3.1.2 Field References

3.1. Cookbook / Examples 9

pylookml, Release 3.0.0

1 >>> myView = View('order_items') + 'id'
2 >>> print(myView.id)
3 dimension: id {
4

5 }
6 #__ref__ stands for reference
7 >>> print(myView.id.__ref__)
8 ${order_items.id}
9 #__refs__ stands for reference short

10 >>> print(myView.id.__refs__)
11 ${id}
12 #__refr__ stands for reference raw
13 >>> print(myView.id.__refr__)
14 order_items.id
15 #__refrs__ stands for reference raw short
16 >>> print(myView.id.__refrs__)
17 id

3.1.3 Convenience Methods

• Add a sum measure for every number dimension on a view

1 orderItems.sumAllNumDimensions()

• Change the name of a field and all its child references

1 >>> print(order_items2.shipping_time)
2

3 dimension: shipping_time {
4 type: number
5 sql: datediff('day',${shipped_raw},${delivered_raw})*1.0 ;;
6 }
7

8 >>> for field in order_items2.shipping_time.children():
9 ... print(field)

10

11 measure: average_shipping_time {
12 type: average
13 value_format_name: decimal_2
14 sql: ${shipping_time} ;;
15 }
16 #The setName_safe method previously change_name_and_child_references, use that if

→˓setName_safe not found
17 >>> order_items2.shipping_time.setName_safe('time_in_transit')
18 >>> print(time_in_transit)
19 dimension: time_in_transit {
20 type: number
21 sql: datediff('day',${shipped_raw},${delivered_raw})*1.0 ;;
22 }
23 >>> for field in order_items2.time_in_transit.children():
24 ... print(field)
25 measure: average_shipping_time {
26 type: average
27 value_format_name: decimal_2
28 sql: ${time_in_transit} ;;
29 }

10 Chapter 3. Build from a developer version

pylookml, Release 3.0.0

• working with a local file

• Changing field names safely (The setName_safe method previously change_name_and_child_references, use
that if setName_safe not found)

myFile = lookml.File('example.view.lkml')
for v in myFile.views:

for f in v.measures():
if f.type.value == 'sum' and not f.name.endswith('_total'):

f.name = f.setName_safe(f.name + '_total')
#Optionally Change the location
myFile.setFolder('pathto/other/folder')
#Write the file
x.write()

3.2 AutoGen for EAV

Warning: Setting up EAV automation can generate high code volume. Pair with a Looker architect to plan for
scale. Multiple instances may be necessary at large volumes.

3.2.1 What is EAV?

EAV data is storing key / value pairs in a table. It can allow application owners to hold data for which they can’t
predict the columns or attributes at design time. Common examples might include customizable objects (i.e. my users
can add their own fields),or scientific data with many attributes or surveys. EAV data allows flexibility, but can be
notoriously difficult to perform analysis on. In this tutorial, we will show how pyLookML can be configured to create
LookML for unpacking, imposing a permission structure and allowing analysis on EAV data.

An Example of a configurable user profile table

Our example will follow a site with a configurable user profile. Organizations that use the site “Orgs” can add profile
fields for their members so that admins can track org specific values for each of their user accounts.

Here is the sample data we’ll be using throughout. Imagine this sample data comes from a table called cus-
tom_profile_fields.

Table 1: custom_profile_fields
user_id org_id field_name value datatype
1 8 c_donation_amount 40 int
1 8 c_highest_achievement gold badge varchar
2 101 c_highest_achievement silver badge varchar
2 101 c_monthly_contribution 300 int
3 101 c_highest_achievement bronze badge varchar
3 101 c_monthly_contribution 350 int
4 101 c_monthly_contribution 350 int
4 101 age 32 int
5 102 c_monthly_contribution 100 int

You can see that the field name and value form the key,value relationship characteristic of EAV. Structured in a
traditional table layout, we would need 4 columns to capture the 4 distinct custom fields: c_donation_amount,
c_highest_achievement, c_monthly_contribution, age. And this would grow (as orgs and user accounts were added)
to be much wider than is practical, or wider than the database may even allow a table to be. However for analysis,

3.2. AutoGen for EAV 11

pylookml, Release 3.0.0

we want to create a “slice” of this table for each org, showing them just their attributes as if it were a normal table.
Also notice that because the “value” column has mixed datatypes it must be a wide and neutral (typically a very wide
varchar) and cast by the application when the record is read. Often by necessity you will often see the value paired
with a column which tracks its type so the application can bind it to the right datatype at runtime.

Here is the LookML starting point (the script assumes that you have already created views for the relevant tables) but
it will allow the ongoing programatic addition of fields. We have a usr table which tracks basic information about
our user accounts eav_source (which would be pointed at public.custom_profile_fields) and usr_profile which will
track the extended profile attributes from custom_profile_fields (we’ll also permission the fields at the org level). The
explore usr, just associates our usr table to the usr profile table which will contain the un-packed EAV values. We have
also added an access filter, so that our orgs can only see thier own records.

connection: "snowlooker"

explore: usr {
access_filter: {

field: usr_profile.org_id
user_attribute: org_id

}
join: usr_profile {

type: left_outer
relationship: one_to_one
sql_on: ${usr.id} = ${usr_profile.user_id} ;;

}
}

view: usr {
sql_table_name: public.users ;;
dimension: email {}
dimension: id {}
dimension_group: created { timeframes: [raw,date,month,year] }

}

view: usr_profile {
dimension: org_id {}
dimension: user_id {}

}

view: eav_source {
sql_table_name: public.custom_profile_fields ;;
dimension: datatype { type: string }
dimension: field_name { type: string }
dimension: org_id { type: number }
dimension: user_id { type: number }
dimension: value { type: string }

}

Now for the automation code. First install the dependencies (FYI I highly reccoemnd using a virtual environment).
We will be using the Looker SDK to run sql against the DB which will tell us what fields we need to create. And we’ll
install our pyLookML package as well.

pip install lookml, looker_sdk

create a file called api.ini in the directory where your python script will run to house the Looker API connection
parameters:

Base URL for API. Do not include /api/* in the url

(continues on next page)

12 Chapter 3. Build from a developer version

https://github.com/looker-open-source/sdk-codegen/tree/master/python

pylookml, Release 3.0.0

(continued from previous page)

base_url = https://mylooker.looker.com:19999
API 3 client id
client_id=put_your_client_id_here
API 3 client secret
client_secret=put_your_sectret_here
Set to false if testing locally against self-signed certs. Otherwise leave True

The automation python file follows these high level steps.

1. connect to the Looker API to pull a list of EAV fields

2. create a pyLookML project connection to your github

3. Set up the objects we’ll be manipulating (some are just strings which will be added back to the LookML at the
end)

4. loop over the list of EAV k,v pairs and do work

5. loop over the distinct raw columns (obtained in the full k,v loop) for adding columns to the NDT

6. loop over the distinct org ids to add the model’s access grants

7. add all the final objects back to the model file

8. save the file back to the project in github

9. hit the looker deploy URL to sync Looker production mode with the github master branch

1 import lookml
2 from looker_sdk import models, methods, init40
3 import json
4

5 # step 1 -- connect to the Looker API to pull a list of EAV fields
6 sdk = init40("api.ini")
7 sql_for_fields = f"""
8 SELECT
9 cpf.org_id

10 ,cpf.value
11 ,cpf.datatype
12 ,cpf.field_name as FIELD_NAME
13 , CASE
14 WHEN cpf.datatype IN ('TIMESTAMP_LTZ') THEN 'time'
15 WHEN cpf.datatype IN ('FLOAT','NUMBER', 'int') THEN 'number'
16 ELSE 'string' END as LOOKER_TYPE
17 FROM
18 -- public.custom_profile_fields as cpf
19 (
20 SELECT 1 as user_id, 8 as org_id, 'c_donation_amount' as field_name,

→˓'40' as value, 'int' as datatype UNION ALL
21 SELECT 1, 8, 'c_highest_achievement', 'gold badge', 'varchar' UNION

→˓ALL
22 SELECT 2, 101, 'c_highest_achievement', 'silver badge', 'varchar'

→˓UNION ALL
23 SELECT 2, 101, 'c_monthly_contribution', '300', 'int' UNION ALL
24 SELECT 3, 101, 'c_highest_achievement', 'bronze badge', 'varchar'

→˓UNION ALL
25 SELECT 3, 101, 'c_monthly_contribution', '350', 'int' UNION ALL
26 SELECT 4, 101, 'c_monthly_contribution', '350', 'int' UNION ALL
27 SELECT 4, 101, 'age', '32', 'int' UNION ALL
28 SELECT 5, 102, 'c_monthly_contribution', '100', 'int'

(continues on next page)

3.2. AutoGen for EAV 13

pylookml, Release 3.0.0

(continued from previous page)

29) as cpf
30 WHERE
31 1=1
32 GROUP BY 1,2,3,4,5
33 """
34 query_config = models.SqlQueryCreate(sql=sql_for_fields, connection_id="snowlooker")
35 query = sdk.create_sql_query(query_config)
36 response = json.loads(sdk.run_sql_query(slug=query.slug, result_format="json"))
37

38 # step 2 -- create a pyLookML project connection to your github
39 proj = lookml.Project(
40 #the github location of the repo
41 repo= 'llooker/your_repo'
42 #instructions on creating an access token: https://help.github.com/en/github/

→˓authenticating-to-github/creating-a-personal-access-token-for-the-command-line
43 ,access_token='your_access_token'
44 #your Looker host
45 ,looker_host="https://example.looker.com/"
46 #The name of the project on your looker host
47 ,looker_project_name="pylookml_testing_2"
48 #You can deploy to branches other than master, a shared or personal branch

→˓if you would like to hop into looker, pull
49 #remote changes and review before the code is committed to production
50 ,branch='master'
51)
52 #For simplicity of this example, all of the objects we're tracking will be contained

→˓in the model file, but for your needs can be split across the project.
53 modelFile = proj['eav_model.model.lkml']
54

55 # step 3 -- Set up the objects we'll be manipulating (some are just strings which
→˓will be added back to the LookML at the end)

56 #the EAV source view points to our custom_profile_fields database table
57 eavSource = modelFile['views']['eav_source']
58 #the user profile we'll call the "flattening NDT" since that's where our flattening

→˓logic lives
59 flatteningNDT = modelFile['views']['usr_profile']
60

61

62 #Ensure there is a hidden explore to expose the eav_souce transformations to our
→˓user_profile NDT

63 modelFile + f'''
64 explore: _eav_flattener {{
65 from: {eavSource.name}
66 hidden: yes
67 }}
68 '''
69 #Begin the derived table, will be added to as we loop through the fields
70 drivedtableString = f'''
71 derived_table: {{
72 explore_source: _eav_flattener {{
73 column: user_id {{ field: _eav_flattener.user_id }}
74 column: org_id {{ field: _eav_flattener.org_id }}
75 '''
76

77 #Set up a pair of list to track the unique org ids and column names
78 #since the api query will be at a org / column level this allows us to "de-dupe"
79 orgIds, columns = [], []

(continues on next page)

14 Chapter 3. Build from a developer version

pylookml, Release 3.0.0

(continued from previous page)

80

81 # step 4 -- loop over the list of EAV k,v pairs and do work
82 for column in response:
83 dimName = lookml.core.lookCase(column['FIELD_NAME'])
84 orgIds.append(column['org_id'])
85 columns.append(dimName)
86 #Step 1) Add flattening measure to the EAV source table
87 eavSource + f'''
88 measure: {dimName} {{
89 type: max
90 sql: CASE WHEN ${{field_name}} = '{column['FIELD_NAME']}' THEN ${

→˓{value}} ELSE NULL END;;
91 }}
92 '''
93

94 # Add to the NDT fields
95 flatteningNDT + f'''
96 dimension: {dimName}_org_{column['org_id']} {{
97 label: "{dimName}"
98 type: {column['LOOKER_TYPE']}
99 sql: ${{TABLE}}.{dimName} ;;

100 required_access_grants: [org_{column['org_id']}]
101 }}
102 '''
103 if column['LOOKER_TYPE'] == "number":
104 flatteningNDT + f'''
105 measure: {dimName}_total_org_{column['org_id']} {{
106 label: "{dimName}_total"
107 type: sum
108 sql: ${{{dimName}_org_{column['org_id']}}} ;;
109 required_access_grants: [org_{column['org_id']}]
110 }}
111 '''
112 # step 5 -- loop over the distinct raw columns (obtained in the full k,v loop) for

→˓adding columns to the NDT
113 for col in set(columns):
114 drivedtableString += f' column: {col} {{ field: _eav_flattener.{col} }}'
115 drivedtableString += '}}'
116

117 # step 6 -- loop over the distinct org ids to add the model's access grants
118 accessGrants = ''
119 for org in set(orgIds):
120 accessGrants += f'''
121 access_grant: org_{org} {{
122 user_attribute: org_id
123 allowed_values: [
124 "{org}"
125]
126 }}
127 '''
128 # step 7 -- add all the final objects back to the model file
129 #Finish by adding some of the strings we've been tracking:
130 flatteningNDT + drivedtableString
131 #Add access grants to the model
132 modelFile + accessGrants
133

134 # step 8 -- save the file back to the project in github
(continues on next page)

3.2. AutoGen for EAV 15

pylookml, Release 3.0.0

(continued from previous page)

135 proj.put(modelFile)
136 #s step 9 -- hit the looker deploy URL to sync Looker production mode with the

→˓github master branch
137 proj.deploy()

The Completed LookML output to the eav.model.lkml file

connection: "snowlooker"

access_grant: org_8 {
user_attribute: org_id
allowed_values: [

"8",
]

}
access_grant: org_101 {

user_attribute: org_id
allowed_values: [

"101",
]

}
access_grant: org_102 {

user_attribute: org_id
allowed_values: [

"102",
]

}

explore: usr {
access_filter: {

field: usr_profile.org_id
user_attribute: org_id

}
join: usr_profile {

type: left_outer
relationship: one_to_one
sql_on: ${usr.id} = ${usr_profile.user_id} ;;

}
}

explore: _eav_flattener {
from: eav_source
hidden: yes

}

view: usr {
sql_table_name: public.users ;;
dimension: email {}
dimension: id {}
dimension_group: created {

timeframes: [
raw, date, month, year,

]
type: time
}

}

(continues on next page)

16 Chapter 3. Build from a developer version

pylookml, Release 3.0.0

(continued from previous page)

view: usr_profile {

derived_table: {
explore_source: _eav_flattener {
column: user_id { field: _eav_flattener.user_id}
column: org_id { field: _eav_flattener.org_id }
column: c_donation_amount { field: _eav_flattener.c_donation_amount}
column: c_monthly_contribution { field: _eav_flattener.c_monthly_contribution }
column: c_highest_achievement { field: _eav_flattener.c_highest_achievement }
column: age { field: _eav_flattener.age }
}

}
dimension: age_org_101 {

label: "age"
type: number
sql: ${TABLE}.age ;;
required_access_grants: [org_101,]
}

dimension: c_donation_amount_org_8 {
label: "c_donation_amount"
type: number
sql: ${TABLE}.c_donation_amount ;;
required_access_grants: [org_8,]
}

dimension: c_highest_achievement_org_101 {
label: "c_highest_achievement"
type: string
sql: ${TABLE}.c_highest_achievement ;;
required_access_grants: [org_101,]
}

dimension: c_highest_achievement_org_8 {
label: "c_highest_achievement"
type: string
sql: ${TABLE}.c_highest_achievement ;;
required_access_grants: [org_8,]
}

dimension: c_monthly_contribution_org_101 {
label: "c_monthly_contribution"
type: number
sql: ${TABLE}.c_monthly_contribution ;;
required_access_grants: [org_101,]
}

dimension: c_monthly_contribution_org_102 {
label: "c_monthly_contribution"
type: number
sql: ${TABLE}.c_monthly_contribution ;;
required_access_grants: [org_102,]
}

dimension: org_id {}
dimension: user_id {}
measure: age_total_org_101 {

label: "age_total"
type: sum
sql: ${age_org_101} ;;
required_access_grants: [org_101,]
}

measure: c_donation_amount_total_org_8 {
(continues on next page)

3.2. AutoGen for EAV 17

pylookml, Release 3.0.0

(continued from previous page)

label: "c_donation_amount_total"
type: sum
sql: ${c_donation_amount_org_8} ;;
required_access_grants: [org_8,]
}

measure: c_monthly_contribution_total_org_101 {
label: "c_monthly_contribution_total"
type: sum
sql: ${c_monthly_contribution_org_101} ;;
required_access_grants: [org_101,]
}

measure: c_monthly_contribution_total_org_102 {
label: "c_monthly_contribution_total"
type: sum
sql: ${c_monthly_contribution_org_102} ;;
required_access_grants: [org_102,]
}

}

view: eav_source {
sql_table_name: public.custom_profile_fields ;;
dimension: datatype { type: string }
dimension: field_name { type: string }
dimension: org_id { type: number }
dimension: user_id { type: number }
dimension: value { type: string }

measure: age {
type: max
sql: CASE WHEN ${field_name} = 'age' THEN ${value} ELSE NULL END ;;
}

measure: c_donation_amount {
type: max
sql: CASE WHEN ${field_name} = 'c_donation_amount' THEN ${value} ELSE NULL END ;;
}

measure: c_highest_achievement {
type: max
sql: CASE WHEN ${field_name} = 'c_highest_achievement' THEN ${value} ELSE NULL

→˓END ;;
}

measure: c_monthly_contribution {
type: max
sql: CASE WHEN ${field_name} = 'c_monthly_contribution' THEN ${value} ELSE NULL

→˓END ;;
}

}

More information and resources

1. 2019 Looker JOIN presentation on EAV and LookML Generation

2. More about modeling EAV data in Looker

As an alternative to the MAX(CASE WHEN NAME=’foo’ THEN VALUE END) construct, you can use first / last
value window functions. The specifics of the implementation may look slightly different.

18 Chapter 3. Build from a developer version

https://www.youtube.com/watch?v=cdyn-KLwyfc
https://discourse.looker.com/t/three-ways-to-model-eav-schemas-and-many-to-many-relationships/1780

pylookml, Release 3.0.0

FIRST_VALUE(
CASE

WHEN attributename = 'single_type' THEN attributevalue
ELSE NULL

END
IGNORE NULLS)
OVER (partition by sessionid order by sessionid)

3.3 Autotune your model using PyLookML

PyLookML offers a command line interface (CLI) which offers several commands, one of which is autotune. It
will automatically create aggregate awareness tables inside of your LookML model based on the most frequently run
queries and commit to a developer branch so that you can confirm the output first.

Let’s get started with an example: Ensure that you have installed it using pip, which will bind the lookml command.
Note: if you install it in a virtual environment the lookml command will only be available when the virtual environment
is active.

pip install lookml

We will be using a cli command ‘lookml autotune’ which will search for a file in your current directory called auto-
tune.ini.

• pyLookML look for an autotune.ini file in the current working directory

• Your autotune.ini should look like this:

[autotune]
access_token = xxx
looker_host = https://mycompany.looker.com:19999
api_client = xxx
api_secret = yyy
model_name = bike_share
branch = dev-john-doe-yddt

Then on the command line you can run:

lookml autotune

If your autotune.ini is stored in a different location, you can provide the path by running

lookml autotune useconfig

and you will be prompted to provide the path

If you would like to provide each bit of info interactively run:

lookml autotune guided

it will ask you for all the info and you can paste it in.

It may take a minute to run, but the result will be a single file with your aggregates located on the branch you provided,
allowing you to check the output before pushing to production.

3.3. Autotune your model using PyLookML 19

pylookml, Release 3.0.0

3.4 Full API Reference

3.5 Change Log

Starting with PyLookML version 3.0.0

3.0.0

• complete and more stable re-write geared toward maximum backward compatibility

• language complete for all the latest LookML language updates (as of Looker 7.20) (new filters, materializations
etc)

• significantly better whitespace handling

• can connect to filesystem without git

• added a CLI with various functions, including project dir list and autotune

• added new operator overloading syntax

• more helpful error messages

20 Chapter 3. Build from a developer version

pylookml, Release 3.0.0

• options such as OMIT_DEFAULTS = true

3.5. Change Log 21

	Why
	Quickstart
	Build from a developer version

